Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biol. Res ; 48: 1-9, 2015. graf
Article in English | LILACS | ID: lil-734618

ABSTRACT

BACKGROUND: The aim of our research work was to quantify total flavonoid contents in the leaves of 13 plant species family Asteraceae, 8 representatives of family Lamiaceae and 9 plant species belonging to familyRosaceae, using the multiplex fluorimetric sensor. Fluorescence was measured using optical fluorescence apparatus Multiplex(R) 3 (Force-A, France) for non-destructive flavonoids estimation. The content of total flavonoids was estimated by FLAV index (expressed in relative units), that is deduced from flavonoids UV absorbing properties. RESULTS: Among observed plant species, the highest amount of total flavonoids has been found in leaves ofHelianthus multiflorus (1.65 RU) and Echinops ritro (1.27 RU), Rudbeckia fulgida (1.13 RU) belonging to the family Asteraceae. Lowest flavonoid content has been observed in the leaves of marigold (Calendula officinalis) (0.14 RU) also belonging to family Asteraceae. The highest content of flavonoids among experimental plants of family Rosaceae has been estimated in the leaves of Rosa canina (1.18 RU) and among plant species of family Lamiaceae in the leaves of Coleus blumei (0.90 RU). CONCLUSIONS: This research work was done as pre-screening of flavonoids content in the leaves of plant species belonging to family Asteraceae, Lamiaceae and Rosaceae. Results indicated that statistically significant differences (P > 0.05) in flavonoids content were observed not only between families, but also among individual plant species within one family.


Subject(s)
Animals , Humans , Mice , Biological Clocks/genetics , Casein Kinase 1 epsilon/deficiency , Circadian Rhythm/genetics , Mutation , tau Proteins/deficiency , tau Proteins/metabolism , Cell Line , Cells, Cultured , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/physiology , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/deficiency , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Period Circadian Proteins , Phosphorylation , Suprachiasmatic Nucleus/physiology , Time Factors , tau Proteins/physiology
2.
Journal of Korean Medical Science ; : 877-882, 2006.
Article in English | WPRIM | ID: wpr-98122

ABSTRACT

The MHC class II transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC class II restricted antigen presentation. Previously we suggested another role of CIITA in Th1/Th2 balance by demonstrating that forced expression of CIITA in murine T cells repressed Th1 immunity both in vitro and in vivo. However, the results were contradictory to the report that CIITA functioned to suppress the production of Th2 cytokine by CD4+T cells in CIITA deficient mice. In this study, we investigated the influence of constitutive expression of CIITA in T cells on Th2 immune response in vivo using murine experimental colitis model. In the dextran sodium sulfate-induced acute colitis, a disease involving innate immunity, CIITA transgenic mice and wild type control mice showed similar progression of the disease. However, the development of oxazolone-induced colitis, a colitis mediated by predominantly Th2 immune response, was aggravated in CIITA-transgenic mice. And, CD4+T cells from the mesenteric lymph node of CIITA-transgenic mice treated with oxazolone exhibited a high level of IL-4 secretion. Together, these data demonstrate that constitutive expression of CIITA in T cells skews immune response to Th2, resulting in aggravation of Th2-mediated colitis in vivo.


Subject(s)
Mice , Animals , Trans-Activators/physiology , Th2 Cells/immunology , T-Lymphocytes/metabolism , Oxazolone/pharmacology , Nuclear Proteins/physiology , Mice, Transgenic , Mice, Inbred C57BL , Interleukin-4/biosynthesis , Colitis/etiology
3.
Braz. j. med. biol. res ; 38(3): 321-334, mar. 2005. ilus, tab
Article in English | LILACS | ID: lil-394802

ABSTRACT

DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.


Subject(s)
Animals , Humans , DNA Repair/physiology , DNA-Binding Proteins/physiology , Endodeoxyribonucleases/physiology , Eukaryotic Cells/chemistry , Genomic Instability , Nuclear Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
4.
Braz. j. med. biol. res ; 37(12): 1811-1818, Dec. 2004. ilus, tab
Article in English | LILACS | ID: lil-388068

ABSTRACT

Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV) domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoderm. Ventral activation of the Toll receptor induces degradation of the IkappaB-related inhibitor Cactus, liberating Dorsal for nuclear translocation. In addition, other pathways have been suggested to regulate Dorsal. Signaling through the maternal BMP member Decapentaplegic (Dpp) inhibits Dorsal translocation along a pathway parallel to and independent of Toll. In the present study, we show for the first time that the maternal JAK/STAT pathway also regulates embryonic DV patterning. Null alleles of loci coding for elements of the JAK/STAT pathway, hopscotch (hop), marelle (mrl) and zimp (zimp), modify zygotic expression along the DV axis. Genetic analysis suggests that the JAK kinase Hop, most similar to vertebrate JAK2, may modify signals downstream of Dpp. In addition, an activated form of Hop results in increased levels of Cactus and Dorsal proteins, modifying the Dorsal/Cactus ratio and consequently DV patterning. These results indicate that different maternal signals mediated by the Toll, BMP and JAK/STAT pathways may converge to regulate NFkappaB activity in Drosophila.


Subject(s)
Animals , Male , Female , Pregnancy , Body Patterning , DNA-Binding Proteins/physiology , Drosophila Proteins/physiology , Drosophila/embryology , Nuclear Proteins/physiology , Protein-Tyrosine Kinases , Phosphoproteins/physiology , Trans-Activators/physiology , Transcription Factors/physiology , Body Patterning/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Electrophoresis, Polyacrylamide Gel , Immunoblotting , NF-kappa B/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
J Biosci ; 2000 Sep; 25(3): 275-84
Article in English | IMSEAR | ID: sea-111298

ABSTRACT

Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR alpha/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor a (RAR alpha) (including: PML-RAR alpha, PLZF-RAR alpha, NPM-RAR alpha, NuMA- RAR alpha or STAT5b-RAR alpha) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR alpha and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR alpha/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Gene Expression Regulation, Leukemic/drug effects , HL-60 Cells/cytology , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Neoplasm Proteins/drug effects , Nuclear Proteins/physiology , Oncogene Proteins, Fusion/drug effects , Receptors, Retinoic Acid/antagonists & inhibitors , Repressor Proteins/physiology , Retinoid X Receptors , Signal Transduction/drug effects , Transcription Factors/physiology , Transcription, Genetic/drug effects , Translocation, Genetic , Tretinoin/pharmacology , Tumor Cells, Cultured/cytology
6.
Indian J Exp Biol ; 1997 Dec; 35(12): 1261-72
Article in English | IMSEAR | ID: sea-55869

ABSTRACT

Ku is a DNA binding protein composed of 70 and 80 kDa subunits which was discovered as autoantigen in a patient with scleroderma-polymyositis overlap syndrome. Ku can bind to the end of DNA and also to some internal sequences. Ku-autoantigen acts as a potential transcription factor for several RNA polymerase II genes and RNA polymerase I gene. Ku is also associated with DNA-dependent protein kinase and involved in V(D)J recombination and DNA break repair mechanisms. Ku may be involved in replication, helicase activity and cell signaling. Therefore, Ku-autoantigen is a very important cellular factor which plays important role in the multiple cellular processes.


Subject(s)
Animals , Antigens, Nuclear , Autoantigens/physiology , DNA Helicases , DNA Repair , DNA-Binding Proteins/physiology , Humans , Nuclear Proteins/physiology , Transcription Factors/physiology
7.
Southeast Asian J Trop Med Public Health ; 1995 ; 26 Suppl 1(): 68-76
Article in English | IMSEAR | ID: sea-33767

ABSTRACT

At the meta-anaphase transition the centromeres in a genome separate in non-random sequential manner. This sequential separation depends upon the timing of replication of DNA located in the pericentric and centromeric region. Cells in long term cultures as well as some newborn humans carry dicentric chromosomes. The inactive centromeres in these dicentric chromosomes do not show any sequence of separation. Whether or not a dicentric chromosome would segregate equationally depends upon if only one centromere binds to microtubules or both are functional. In man and other higher apes, a 171 base pair long DNA repeat (the alphoid sequence) is present on all centromeres. In mouse, the minor satellite fraction is said to constitute the centromere. These two DNAs also carry a 17 bp long sequence, the CENP-B 'box' to which the CENP-B antigen is bound. Other species-eg, rat, pig, fish, Chinese hamster-exhibit still different sequences at the centromere and do not carry the CENP-B 'box' even though the antigen is ubiquitously present in all species. It is not clear why so many diverse sequences constitute the centromere when all centromeres look alike and perform the same function. I propose that the primary constriction owes its property not necessarily to its DNA composition but to some stereophysical property, eg the curvature and that the region is held together till late metaphase-anaphase due to a specific proteinaceous factor. The mammalian centromeres bind a complex of several proteins dubbed as CENtromere Proteins (CENP's). This complex, however, is not what constitutes the trilamellar kinetochore structure as see under the electron microscope.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Animals , Cell Division , Cells, Cultured , Centromere/physiology , Chromosome Aberrations/genetics , Chromosome Disorders , Cricetinae , Cricetulus , DNA Replication , Fishes , Hominidae , Humans , Infant, Newborn , Kinetochores/physiology , Male , Mice , Nuclear Proteins/physiology , Rats , Repetitive Sequences, Nucleic Acid , Swine
SELECTION OF CITATIONS
SEARCH DETAIL